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AbstrPct. Sykes and Gaunt showed the mean cluster size in the two-dimensional king model 
to diverge as (Tc- 7‘)-’ with 0 = 1.91 larger than the Ising susceptibility exponent y = 1-75, 
This difference e - y is explained here at least partly by Binder’s cluster model for critical 
points where f l a y + @ =  1475. 

Cluster or droplet models have for many years been used as a simple description of 
static and dynamic critical phenomena near second-order phase transitions (Fisher 
1967, Domb 1976, Binder 1976, Kretschmer et a1 1976). Such models assume as 
known the number nl of clusters of size 1 where a ‘cluster’ for example is thought to be a 
small liquid droplet (within the gas phase) containing 1 molecules (Fisher 1967). Or the 
cluster may represent a group (of size I )  of spins surrounded by t spins in an Ising 
magnet. In simple models (Fisher 1967) the susceptibility or compressibility x varies 
with the second moment of the cluster size distribution: 

For T +  T,, the susceptibility ,y diverges as IT- TCI-’ where y = 1-75 exactly in the 
two-dimensional Ising model (Wu et a1 1976). On the other hand Sykes and Gaunt 
(1976) recently found near the Curie temperature of this model 

m 

/ = 1  
12n/ = ( rc - T)y, e = 1.91 k0.01 

from exact ‘series expansion’ analysis of nl for small 1. The aim of the present letter is to 
explain this difference between the exponents 8 and y for the second moment and 
susceptibility, respectively. 

The magnetization m (in units of the saturation magnetization) follows near T, a 
scaling homogeneity law: m (T, H) = (T, - T)’% (H( T, - T)-86). On the other hand, 
one has exactly m = 1 -2Xlnr, where 1 = 1,2 ,  . . . counts the total number of J. spins in a 
cluster, nl is the number of clusters per site, and a ‘cluster’ is a group of 4 spins 
surrounded by t spins and otherwise quite arbitrarily defined. To give scaling for the 
magnetization, the cluster numbers should also follow a scaling homogeneity law 
(Binder 1976, equation (8)): 

nl ( T, H) = I - ~ - Y %  (H y ,  ( Tc--n/=) (2) 
where S is the usual critical exponent for the critical isotherm. (Here the prefactor in 
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front of the scaling function ii is determined such that on the critical isotherm 
m (T,, N) = 2Xfn,  (T,, H) - 2 B n I  (T,, 0) varies as HI/’.) The quantity l y  can be regarded 
as the ‘magnetization’ of a cluster, i.e. as the excess number of spins compared to zero 
magnetization, to the average magnetization, or to some background magnetization 
(Kadanoff 1971, Stauffer er af 1971, Binder 1976, Kretschmer et a1 1976). Since the 
spontaneous magnetization vanishes as (Tc- T)@, one has z = y /pS.  In general the main 
contribution to the singular parts of the various 1-sums arises from f near f,cc 
(T,- T ) - I / z  = (Tc- T)--Bg’y, where 1, may correspond to cluster radii close to the 
correlation length 6. Thus for any (large) exponent i we approximate Xfinl - lF1nle.  

For the new exponent y in equation (2) Binder derived rather generally an inequality 
(equation (29) of Binder 1976): 

y 1/(1+ 1/S) =P6/(2-a). (3a)  

(There is a misprint in Binder’s equation (29) where 1 + 1/6 has to be replaced by its 
reciprocal value.) With a particular simple assumption this inequality becomes an 
equality: 

y = 1/(1+ 1/6). (36) 

In the old Fisher model for critical point (Fisher 1967) or in percolation theory (dilute 
low temperature ferromagnets) one has y = 1; that choice is now excluded near T, by 
the inequality (3a). 

Now it is very easy to explain the difference between the second moment S a  
(T, - T)-’ and the susceptibility x oc (T,- T)-y : 

Thus the susceptibility no longer is given by the second moment; instead 

( 5 )  

S / x ~ ( T c - - T ) - @ ;  e = y + p ,  (6a 1 

eay+fi. (6b 1 

e 3 1.875, (6c) 

s / ~  al:-Ya(T,- n@6(1-1/~) 

as the ratio of equations (4a,b) shows. With the simple choice (3b) we get 

where the more general inequality (3a) gives 

In the two-dimensional Ising model, with /3 = 1/8 and y = 7/4 we thus get 

a result consistent with the 8 = 1-91 f 0.01 of Sykes and Gaunt (1976). Moreover, the 
simple choice (36) for Binder’s exponent y, with 8 = 1.875, explains most of the 
difference between the exponents 8 and y. Therefore the Sykes and Gaunt data for two 
dimensions are roughly explained by Binder’s cluster model. 

Unfortunately this agreement is restricted to two dimensions. In general one has to 
be more careful in defining what a cluster is; so far this definition was open. In (site) 
precolation theory or for dilute low temperature ferromagnets it is appropriate to define 
a cluster as a set of occupied places or spins connected by nearest-neighbour bonds. For 
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at T = 0 even a single bond connecting two rather compact groups of spins as in the 
following diagram: 

. . .  . . .  

. . . . a . . .  . . .  a . .  

is forcing all the spins in the two groups to be parallel to each other; the left part cannot 
be oriented opposite to the right part at very low temperatures. (The dots in this 
diagram denote spins surrounded by non-magnetic atoms which are not shown.) But at 
higher temperatures such a single bond can quite easily be broken; and thus it may be 
more appropriate then to treat such a structure as two clusters. If instead of a dilute 
ferromagnet we look at a pure Ising model near its Curie temperature, then the dots of 
the diagram represent 3. spins surrounded by t spins which are not shown. Again the 
above structure may count as two clusters instead of one since at such high temperatures 
a single bond cannot keep the two rather large wings together (Binder 1976, figure 1). 
Thus it has been suggested for cluster-model descriptions of Curie points, that a ‘cluster’ 
or ‘droplet’ is in pure king models not just a group of parallel spins connected by 
nearest-neighbour exchange forces but is better regarded as a magnetization fluctua- 
tion, i.e. a region where the local magnetization density is larger than the average or 
background magnetization (Kadanoff 1971, Stauffer et a1 1971, Kretschmer et a1 
1976). 

Without such an appropriate cluster definition the clusters will percolate in three 
dimensions (Muller-Krumbhaar and Stoll 1976) before the Curie point is reached in a 
pure Ising model, and the critical behaviour will no longer be described by a scaling 
cluster model (equation (2)). Perhaps already in two dimensions the difference between 
8 = 1.91 and y + P  = 1.875 indicates that clusters should not be defined simply as 
groups of nearest-neighbour-connected .1 spins. For higher dimensions this difference 
in cluster definitions seems crucial even for the position of the phase transition. Thus in 
general one needs a still lacking ‘cluster’ definition which is as precise and practical as 
the usual (Sykes and Gaunt 1976) definition of clusters as sets of nearest-neighbour- 
connected spins but which instead does not count very loose structures as single clusters 
(Binder 1976). 

We thank K Binder for a critical reading of the manuscript. 
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